
Customizing GeoNode

Emere Arco, Simone Balbo, Paolo Pasquali, Constantin Sandu
ITHACA

Outline
● GMES RDA
● MASDAP
● HaitiData
● UI/UX Considerations
● Way forward
● Conclusions

ITHACA + GeoNode
● Need for a complete set of functionalities

○ Upload data
○ Quickly create a Web Map
○ Data styling (optional)
○ Metadata catalogue
○ Support

● Open Source
● Knowledge of GeoNode key components

(Django, GeoServer, GeoNetwork and PostGIS)

GMES Reference Data GeoNode
Implementation of an initial GMES
Service for Geospatial Data Access
covering areas outside Europe

● Analysis of non-EU reference data
availability, quality and consistency
and gaps to be filled

● Dissemination of the data quality
assessment results

MASDAP 1 (2012)

● Ensure that the data created
by a number of past or
ongoing projects is maintained
and remains accessible and
useful to the Government of
Malawi

● Technical support and training
to the National Spatial Data
Center and partner ministries

MASDAP 2

GeoNode 2.4

Apps: Contact Form
Requirements:

● A contact form to be available
on the GeoNode site

● Registered and non-registered users
must be enabled to send a message
to the administrators

● A security check must prevent a robot
to spam the system

● The message should reach an email inbox,
managed by the administrators

Solution:

● A Django app was added, that performs the required descriptions
● This was enriched with the google “nocaptcha_recaptcha” tool (i.e. “I’m not a robot”)

GeoNode 2.6

HaitiData

HaitiData with Kartoza
Updating the existing Haiti GeoNode platform (HaitiData) using the latest version of
GeoNode and developing additional functions specific to HaitiData

● Mosaic Clip’n’Ship (Aerial imagery and DSM)
● Charts
● Docker + Rancher

In depth training of staff of CNIGS (Centre National de l'Information Géo-Spatiale)
that will be responsible of the renewed HaitiData platform.

Charts
Specifications:

● Capacity of generating a chart
● On vector datasets
● Two-fields entry (label or category field, quantity field)
● Possibility of aggregating data, according to e.g. mean, average etc.
● Capacity of storing the chart in db, for retrieving it at a later stage

Charts

Charts
Solution provided

● Software stack: GeoServer, Django (two apps), d3js
● GeoServer provides the WFS service, which is used as source
● a Django app acts as a middleware between the client and WFS
● D3js reads a csv file obtained from the WFS
● D3js performs the aggregation and generates the chart on the client side
● another Django app stores the input parameters of each single chart in the db

and handle modifications

Charts
Integration with the GeoNode permission system:

● Non registered users can create a chart, on vector layers on which download
permissions is granted to anyone

● Registered users can create a chart, on additional layers which they have been
granted download permission to

● Registered users can save a chart in the system, in order to publish it. A chart
inherits the download permissions on the original layer

● Charts can be modified and deleted by the owner, or by the owner of the
original layer

Charts
Next steps and ideas:

● Currently the chart is not saved as image; the input parameters are saved (i.e.
layer, fields, aggregation, chart type, title, abstract). As a consequence every
time a user wants to see a chart, this must be regenerated (bandwidth...)

● A solution would be to store the HTML element that describes a chart… but
what about consistency if the layers is modified? Triggering chart update?

GeoNode + Wagtail CMS
Wagtail built on Django

MASDAP is based on GeoNode 2.4

Django==1.6.11 but need Django>=1.8.1,<1.12

(Latest Wagtail version requires Django>=1.11,<2.1)

How to install Wagtail CMS in GeoNode
1. pip install wagtail
2. Add required apps to INSTALLED_APPS
3. Add 2 entries in MIDDLEWARE
4. Configure urls.py
5. manage.py migrate
6. manage.py startapp

How to integrate Wagtail CMS?
GeoNode and Wagtail can share:

● Same Users
● Same Content (e.g. Maps)

How can I share more?
Register your piece of code as a Snippet

...
from geonode.maps.models import Map

class BlogMap(BlogPage):
 map = models.ForeignKey(
 'maps.Map',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 content_panels = BlogPage.content_panels + [
 SnippetChooserPanel('map'),
]

register_snippet(Map)

GeoNode Maps

Wagtail Maps

Editing Posts

Wagtail Blog Posts

A Blog post with a GeoNode map

What’s next?
ITHACA GeoNode (based on 2.8) will provide

● ERDS (Extreme Rainfall Detection System) products:
○ GPM Cumulated Rainfall
○ GFS Cumulated Rainfall
○ Extreme Rainfall Alerted Areas

● Drought Monitoring
● Early Impact Maps
● OSM Extracts and Analysis
● UI/UX Refactoring (Bootstrap 4?)

How can I customize the UI/UX?
● GeoNode UI is based on Bootstrap 3
● HTML, CSS, JS are documented in Bootstrap
● Always create a Django project to customize your GeoNode installation
● Modify the Less files (e.g. variables.less) and then compile in CSS

Example: About 20 years ago
<table style=”width:100%”>
 <tr>
 <th>...</th>
 <th>...</th>
 <th>...</th>
 </tr>
 <tr>
 <td>...</td>
 <td>...</td>
 <td>...</td>
 </tr>
 <tr>
 <td>...</td>
 <td>...</td>
 <td>...</td>
 </tr>
</table>

Tables vs Divs. Spot any difference?
<table style=”width:100%”>
 <tr>
 <th>...</th>
 <th>...</th>
 <th>...</th>
 </tr>
 <tr>
 <td>...</td>
 <td>...</td>
 <td>...</td>
 </tr>
 <tr>
 <td>...</td>
 <td>...</td>
 <td>...</td>
 </tr>
</table>

<div class=”container-fluid”>
 <div class=”row”>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 </div>
 <div class=”row”>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 </div>
 <div class=”row”>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 <div class=”col-md-4”>...</div>
 </div>
</div>

HTML5 Best practice
<header>...</header>
<nav>...</nav>
<article>...</article>
<aside>...</aside>
<footer>...</footer>

Solution
Use CSS to style your HTML pages

Use mixins = you can include the Bootstrap classes in your stylesheet!

● Bad:
Button

● Good:
Button

.my-style {
.btn
.btn-primary
.btn-lg

}

Conclusions (or Recommendations)
● Easy to add Django apps
● Keep the pace with recent Django version
● Translations: Don’t mix content (Django v. Angular)

● Use Front-end framework (Bootstrap?) in a smarter way
● Light pages (more speed, more compatibility, more suitable)
● Less is more but Sass is even more
● Avoid inline styling

