FAIR data management from a research institute's perspective: GeoNode at IGB

Vanessa Bremerich, Sami Domisch, Annett Wetzig, Simone Frenzel, Daniel Langenhaun, Jaime Ricardo Garcia Marquez, Sonja Jähnig
IGB’s GeoNode task group

Vanessa Bremerich
Sami Domisch
Daniel Langenhaun
Sonja Jähning
Annett Wetzig
Jaime Ricardo Garcia Marquez
Simone Frenzel
Rita Adrian

Research for the future of our freshwaters
IGB in numbers (2019)

374 employees and guests
• 148 scientists
• 53 doctoral students
• 92 science supporting staff

6 departments
• 38 research groups
• 35 third party funded projects (ongoing)

291 scientific publications
Research data types at IGB

- environmental data, long-term monitoring or sampling data
- biodiversity data
- gene sequencing data
- data from experiments or modeling
- geodata, earth observation data
- social data from questionnaires/surveys
- source code (R, Python, ...)

Research for the future of our freshwaters
Open Science and the FAIR data principles

Findable
Data and supplementary materials have sufficiently rich metadata and a unique and persistent identifier.

Accessible
Metadata and data are understandable to humans and machines. Data is deposited in a trusted repository.

Interoperable
Metadata and data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

Reusable
Data and collections have a clear usage licenses and provide accurate information on provenance.

Open Standards
Open Data
Open Source
Open Access

figure altered after Jomier (2017)

FORCE11, 2014; Wilkinson et al, 2016; LIBER (2017); figure after Goudeseune et al. (2019)
<table>
<thead>
<tr>
<th>Findable</th>
<th>Accessible</th>
<th>Interoperable</th>
<th>Reusable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and supplementary materials have sufficiently rich metadata and a unique and persistent identifier.</td>
<td>Metadata and data are understandable to humans and machines. Data is deposited in a trusted repository.</td>
<td>Metadata and data use a formal, accessible, shared, and broadly applicable language for knowledge representation.</td>
<td>Data and collections have a clear usage licenses and provide accurate information on provenance.</td>
</tr>
</tbody>
</table>

Findable
- Who has what kind of data?
- Are (minimal) metadata added?
- Is a DOI added?

Accessible
- Research data portal available?
- Metadata and data understandable?

Interoperable
- Are standards used (web services, file formats, metadata)?

Reusable
- Where is the data from?
- Am I allowed to reuse it?
- What license applies?
Research data management at IGB

FRED - Freshwater Research and Environmental Database

• store and share environmental data and long-term monitoring data
• data from different sources can be combined in „packages“
• mandatory and recommended metadata
• DOI and data license
• semantic search
• data harmonization
• interoperability

https://fred.igb-berlin.de/
GeoNode as IGB’s geodata management system

Why GeoNode?

• easy-to-use and customizable interface, user-friendly
• metadata automatically added, metadata wizard
• search and filter layers
• user management, access rights and groups
• implementation of OGC standards and protocols

• use of mature open source geospatial projects
• interactive map viewer
• Python/Django framework, relatively easy to extend and build on
 → active community and good documentation, workshops, mailing list, gitter…

GeoNode
IGB GeoNode

Implementation
• installation and customization done by GeoSolutions in 2019
→ geo.igb-berlin.de

IGB requirements:
• group and group categories filter
• user authentication via LDAP

→ https://github.com/GeoNode/geonode-contribs/tree/master/ldap
Use cases

1 – Internal geodata management
• examples from current research projects

2 – Link to FRED
• building an integrated research data management infrastructure (FRED and IGB GeoNode) to link geodata to other research data and publications in single "packages"

3 – (Inter)national data and research networks
• Freshwater Information Platform and Global Freshwater Biodiversity Atlas
• extending and building on IGB's GeoNode to develop a pilot for NFDI4Earth
Use case 1 – Internal geodata management

GLANCE project
• 5-year research project funded by BMBF
• investigated the impacts of changing flow conditions in rivers on benthic invertebrates and fishes
• three catchments in Germany:
 • Treene in the lowlands,
 • Kinzig in the low mountain ranges
• Ammer in the Alps

GLANCE
Global change effects in river ecosystems

Sonja Jähnig
Research Group Leader
Research group
Aquatic Ecogeography
https://www.igb-berlin.de/en/project/glance
Use case 1 – Internal geodata management

Study site Ammer1 (GLANCE project)

The dataset presented here contains information on the rivers sampled in the GLANCE project. The Ammer1 and 2 catchments are dominated by gravel and stone substrates with steep gradients, which is located in the alpine region of Germany.

- Sonja Jähnig
- 10 Sep 2020
- View Map

Study site Treene (GLANCE project)

The dataset presented here contains information on the rivers sampled in the GLANCE project. The Treene River catchment, with a small gradient, sand-gravel sediment, and groundwater-driven conditions, is located in the northern lowlands of Germany.

- Sonja Jähnig
- 10 Sep 2020
- View Map

Map Layers

This map uses the following layers:

- Ammer1_Bathymetry
- Ammer_Peissenberg_Bathymetry
- Substrates_Ammer1_spring2015
- GLANCE_SamplingData
- SamplingSites_Qmeas

Map Layers

This map uses the following layers:

- Substrates_Treene2_spring2015
- Treene1_Bathymetry
- Treene_Bathymetry
- Treene2_Bathymetry
- GLANCE_SamplingData
- SamplingSites_Qmeas
Use case 1 – Internal geodata management

GLOWABIO
junior research group

• global geospatial analyses
• creating novel high-resolution freshwater ecoregions (90m)
• analyzing spatial patterns in global freshwater biodiversity
• spatial conservation planning given habitat and biodiversity features to highlight potential protection gaps.

GLOWABIO
Global freshwater biodiversity, biogeography & conservation

Sami Domisch
Research Group Leader
Research group
Global Freshwater Biodiversity, Biogeography and Conservation

https://www.igb-berlin.de/en/projekt/glowabio
https://glowabio.org/

Research for the future of our freshwaters
Use case 1 – Internal geodata management

GLOWABIO junior research group

- global scale, high spatial resolution
- all analyses will be performed using open-source geospatial tools (e.g. R, GRASS, GDAL/OGR, pktools, OpenForis)
- all data layers and codes will be stored in public repositories

→ automated pre-processing and upload to GeoNode

GLOWABIO
Global freshwater biodiversity, biogeography & conservation

Sami Domisch
Research Group Leader
Research group Global Freshwater Biodiversity, Biogeography and Conservation

https://www.igb-berlin.de/en/projekt/glowabio
https://glowabio.org/
Use case 1 – Internal geodata management

Freshwater-specific environmental variables at 1km resolution

Near-global freshwater-specific variables at 1km spatial resolution (Domisch et al. 2015). Data download at earthenv.org/streams.

Test data for freshwater distribution models

For illustration purpose: we use example stream networks, such as the one below that can be quickly generated in GRASS-GIS, for testing various tools and techniques for routing, network modeling, point processing etc.

https://glowabio.org/maps/sdm_test_data/
Use case 2 – link to FRED

GeoNode to FRED:

- layer list from GeoNode read via REST
Use case 2 – link to FRED

GeoNode to FRED:
- selected layer(s) can be added to data package
Use case 2 – link to FRED

FRED to GeoNode

- read access on selected PostgreSQL views to evaluate direct import into GeoServer
- e.g. sampling sites, study sites, long-term monitoring data
Use case 3 – (Inter)national data and research networks

IGB GeoNode as geospatial repository

- for the Freshwater Information Platform and the
- Global Freshwater Biodiversity Atlas

http://www.freshwaterplatform.eu/
Global Freshwater Biodiversity Atlas

- established in 2013
- EU FP7 project BioFresh
- focus on broad scale freshwater biodiversity maps

[Image of the Global Freshwater Biodiversity Atlas]

http://atlas.freshwaterbiodiversity.eu/
Use case 3 – (Inter)national data and research networks

Global Freshwater Biodiversity Atlas

maps in four chapters:

• Freshwater Biodiversity
• Resources and Ecosystems
• Freshwater Pressures
• Conservation and Management

http://atlas.freshwaterbiodiversity.eu/
Use case 3 – (Inter)national data and research networks

Global Freshwater Biodiversity Atlas

- interactive GeoExt2 mapping tool
- GeoServer
 → migrate to GeoNode
 → metadata and download links

http://atlas.freshwaterbiodiversity.eu/
National research data infrastructure (NFDI)

NFDI

is a coordinated network of consortia tasked with providing science-driven data services to research communities.

Aim

• systematically manage scientific and research data
• provide long-term data storage, backup and accessibility
• network the data both nationally and internationally

https://www.dfg.de/en/research_funding/programmes/nfdi/index.html
https://youtu.be/x3Cvn1vNQ98
NFDI\textsubscript{4}Earth

National Research Data Infrastructure for Earth System Science (**NFDI4Earth**)
- funding decision of the Joint Science Conference (GWK) in June 2021
- five years’ work plan (2021-26)
- currently 54 partners

Aim
- provide researchers with FAIR, easy, coherent, efficient (and open and unrestricted) access to all relevant Earth System data, scientific data management tools and data analysis services.

figure: https://www.nfdi4earth.de/about-us/ambition-and-mission
NFDI$_4$Earth Pilots 2020

National Research Data Infrastructure for Earth System Science (NFDI$_4$Earth)

https://www.nfdi4earth.de/participate/get-involved-by-pilots

Topics

<table>
<thead>
<tr>
<th>Name</th>
<th>Topics</th>
<th>Suggested for funding</th>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathy4All Workflows for Multibeam Processing and Visualization</td>
<td>Geophysics and Geodesy</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>Enhancing Earth system model evaluation with data cube enabled machine learning</td>
<td>Atmospheric Science, Oceanography and Climate Research</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>GeoRoCo-MetBase Tools</td>
<td>Geochemistry, Mineralogy and Crystalography</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>German marine seismic data access</td>
<td>Geology and Paleontology</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>Getting freshwater spatio-temporal data on track (GeoFRESH)</td>
<td>Water Research</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>Interoperability and reusability for geoscientific lab data</td>
<td>Geophysics and Geodesy</td>
<td>after 1st call</td>
<td>PDF</td>
</tr>
<tr>
<td>Linking Environmental D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot Principal Investigator

1. Deutsches Zentrum für Luft- und Raumfahrt
2. Technische Universität Dresden
3. Deutscher Wetterdienst
4. GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
5. Brandenburgische Universität Potsdam
6. University
7. Helmholtz
8. Leibniz
9. Departmental Research
10. Max-Planck

Type of Institution

- University
- Helmholtz
- Leibniz
- Departmental Research
- Max-Planck

Research for the future of our freshwaters
Getting freshwater spatiotemporal data on track

Sami Domisch¹, Giuseppe Amatulli², Vanessa Bremerich¹, Luc De Meester¹, Mark Gessner¹, Hans-Peter Grossart¹, Rita Adrian¹

¹Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
²Yale University, Centre for Research Computing, New Haven, CT, 06511, USA

Date of submission: July 24th 2020

Abstract

Spatiotemporal freshwater-related earth system data are currently poorly organized and its full potential for research or management is rarely exploited, due to data disparity and its missing interoperability given the different data standards and formats. It is especially the spatial struc-
Freshwater spatiotemporal data integration within an online platform

- **FRED**
 - Survey data
 - Citizen science
 - Museum collections

- **IGB GeoNode**
 - Opportunistic data
 - Gridded data
 - Polygon data

GeoFRESH
- 90m resolution network
- Gridded environmental attributes

- Link multiple freshwater data dimensions
- Connectivity among water bodies
- FAIR data for Earth system sciences